1,116 research outputs found

    A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum

    Get PDF
    ArticleFems Microbiology Letters. 242(2): 265-274 (2005)journal articl

    Hubbard band or oxygen vacancy states in the correlated electron metal SrVO3_3?

    Full text link
    We study the effect of oxygen vacancies on the electronic structure of the model strongly correlated metal SrVO3_3. By means of angle-resolved photoemission (ARPES) synchrotron experiments, we investigate the systematic effect of the UV dose on the measured spectra. We observe the onset of a spurious dose-dependent prominent peak at an energy range were the lower Hubbard band has been previously reported in this compound, raising questions on its previous interpretation. By a careful analysis of the dose dependent effects we succeed in disentangling the contributions coming from the oxygen vacancy states and from the lower Hubbard band. We obtain the intrinsic ARPES spectrum for the zero-vacancy limit, where a clear signal of a lower Hubbard band remains. We support our study by means of state-of-the-art ab initio calculations that include correlation effects and the presence of oxygen vacancies. Our results underscore the relevance of potential spurious states affecting ARPES experiments in correlated metals, which are associated to the ubiquitous oxygen vacancies as extensively reported in the context of a two-dimensional electron gas (2DEG) at the surface of insulating d0d^0 transition metal oxides.Comment: Manuscript + Supplemental Material, 12 pages, 9 figure

    Beam Halo Imaging with a Digital Optical Mask

    Full text link
    Beam halo is an important factor in any high intensity accelerator. It can cause difficulties in the control of the beam, emittance growth, particle loss and even damage to the accelerator. It is therefore essential to understand the mechanisms of halo formation and its dynamics in order to control and minimize its effects. Experimental measurement of the halo distribution is an important tool for such studies. In this paper, we present a new adaptive masking method that we have developed to image beam halo, which uses a digital micro-mirror-array device (DMD). This method has been thoroughly investigated in the laboratory using laser and white light sources, and with real beams produced by the University of Maryland Electron Ring (UMER). A high dynamic range ~10(5) has been demonstrated with this new method and recent studies indicate that this number can be exceeded for more intense beams by at least an order of magnitude. The method is flexible, easy to setup and can be used at any accelerator or light source. We present the results of our measurements of the performance of the method and images of beam halos produced under various experimental conditions.Comment: 44 pgs.; submitted to Phys. Rev. ST Accel. and Beams, 3/9/201

    Evidence for phase formation in potassium intercalated 1,2;8,9-dibenzopentacene

    Full text link
    We have prepared potassium intercalated 1,2;8,9-dibenzopentacene films under vacuum conditions. The evolution of the electronic excitation spectra upon potassium addition as measured using electron energy-loss spectroscopy clearly indicate the formation of particular doped phases with compositions Kx_xdibenzopentacene (xx = 1,2,3). Moreover, the stability of these phases as a function of temperature has been explored. Finally, the electronic excitation spectra also give insight into the electronic ground state of the potassium doped 1,2;8,9-dibenzopentacene films.Comment: 6 pages, 5 figures. arXiv admin note: text overlap with arXiv:1201.200

    Absorption of Scintillation Light in a 100 \ell Liquid Xenonγ\gamma Ray Detector and Expected Detector Performance

    Full text link
    An 800L liquid xenon scintillation γ\gamma ray detector is being developed for the MEG experiment which will search for μ+e+γ\mu^+\to\mathrm{e}^+\gamma decay at the Paul Scherrer Institut. Absorption of scintillation light of xenon by impurities might possibly limit the performance of such a detector. We used a 100L prototype with an active volume of 372x372x496 mm3^3 to study the scintillation light absorption. We have developed a method to evaluate the light absorption, separately from elastic scattering of light, by measuring cosmic rays and α\alpha sources. By using a suitable purification technique, an absorption length longer than 100 cm has been achieved. The effects of the light absorption on the energy resolution are estimated by Monte Carlo simulation.Comment: 18 pages, 10 figures (eps). Submitted to Nucl. Instr. and Meth.

    High-density two-dimensional electron system induced by oxygen vacancies in ZnO

    Get PDF
    We realize a two-dimensional electron system (2DES) in ZnO by simply depositing pure aluminum on its surface in ultra-high vacuum, and characterize its electronic structure using angle-resolved photoemission spectroscopy. The aluminum oxidizes into alumina by creating oxygen vacancies that dope the bulk conduction band of ZnO and confine the electrons near its surface. The electron density of the 2DES is up to two orders of magnitude higher than those obtained in ZnO heterostructures. The 2DES shows two ss-type subbands, that we compare to the dd-like 2DESs in titanates, with clear signatures of many-body interactions that we analyze through a self-consistent extraction of the system self-energy and a modeling as a coupling of a 2D Fermi liquid with a Debye distribution of phonons.Comment: Article + Supplementary Material, 12 pages, 3 main figures, 6 supplementary figure
    corecore